1,100 research outputs found

    1 um Excess Sources in the UKIDSS - I. Three T Dwarfs in the SDSS Southern Equatorial Stripe

    Get PDF
    We report the discovery of two field brown dwarfs, ULAS J0128-0041 and ULAS J0321+0051, and the rediscovery of ULAS J0226+0051 (IfA 0230-Z1), in the Sloan Digital Sky Survey (SDSS) southern equatorial stripe. They are found in the course of our follow-up observation program of 1 um excess sources in the United Kingdom Infrared Telescope Infrared Deep Sky Survey. The Gemini Multi-Object Spectrographs spectra at red optical wavelengths (6500-10500 A) are presented, which reveal that they are early-T dwarfs. The classification is also supported by their optical to near-infrared colors. It is noted that ULAS J0321+0051 is one of the faintest currently known T dwarfs. The estimated distances to the three objects are 50-110 pc, thus they are among the most distant field T dwarfs known. Dense temporal coverage of the target fields achieved by the SDSS-II Supernova Survey allows us to perform a simple time-series analysis, which leads to the finding of significant proper motions of 150-290 mas/yr or the transverse velocities of 40-100 km/s for ULAS J0128-0041 and ULAS J0226+0051. We also find that there are no detectable, long-term (a-few-year) brightness variations above a few times 0.1 mag for the two brown dwarfs.Comment: Accepted for publication in the Astronomical Journal; Typos correcte

    Low-Loss EELS Investigations on Atomically Thin MoxW(1-x)S2 Nanoflakes for Delving into Their Optoelectronic Properties

    Get PDF
    For more than a decade, the scientific community has developed a broadening interest in atomically thin 2D materials; due to their attractive mechanical, thermal and electronic properties. Within this family of materials, transition metal dichalcogenides (TMD) have been on the peak of this research interest lately. These materials present a TX2 type where T is a transition metal of groups IV, V or VI, and X stands for a chalcogen (S, Se or Te). Focusing on their electronic properties, a point of great interest application-wise is band gap tuning. In bulk, materials, one of the major techniques used for this purpose consists on alloying materials with different band gaps. Up until now, the only atomically thin alloy types reported for TMDs have been of the MoxW(1-x)Se2 or the MoXW(1-X)S2. For the second one, evidence of a band gap shift with the alloying degree in monolayers has been found. This evidence is supported both theoretically (by density functional theory (DFT)) and experimentally (via photoluminescence)..

    Structural Insights into Differences in Drug-binding Selectivity between Two Forms of Human α1-Acid Glycoprotein Genetic Variants, the A and F1*S Forms

    Get PDF
    Human α1-acid glycoprotein (hAGP) in serum functions as a carrier of basic drugs. In most individuals, hAGP exists as a mixture of two genetic variants, the F1*S and A variants, which bind drugs with different selectivities. We prepared a mutant of the A variant, C149R, and showed that its drug-binding properties were indistinguishable from those of the wild type. In this study, we determined the crystal structures of this mutant hAGP alone and complexed with disopyramide (DSP), amitriptyline (AMT), and the nonspecific drug chlorpromazine (CPZ). The crystal structures revealed that the drug-binding pocket on the A variant is located within an eight-stranded β-barrel, similar to that found in the F1*S variant and other lipocalin family proteins. However, the binding region of the A variant is narrower than that of the F1*S variant. In the crystal structures of complexes with DSP and AMT, the two aromatic rings of each drug interact with Phe-49 and Phe-112 at the bottom of the binding pocket. Although the structure of CPZ is similar to those of DSP and AMT, its fused aromatic ring system, which is extended in length by the addition of a chlorine atom, appears to dictate an alternative mode of binding, which explains its nonselective binding to the F1*S and A variant hAGPs. Modeling experiments based on the co-crystal structures suggest that, in complexes of DSP, AMT, or CPZ with the F1*S variant, Phe-114 sterically hinders interactions with DSP and AMT, but not CPZ. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc

    Atomic Configuration of Nitrogen Doped Single-Walled Carbon Nanotubes

    Get PDF
    Having access to the chemical environment at the atomic level of a dopant in a nanostructure is crucial for the understanding of its properties. We have performed atomically-resolved electron energy-loss spectroscopy to detect individual nitrogen dopants in single-walled carbon nanotubes and compared with first principles calculations. We demonstrate that nitrogen doping occurs as single atoms in different bonding configurations: graphitic-like and pyrrolic-like substitutional nitrogen neighbouring local lattice distortion such as Stone-Thrower-Wales defects. The stability under the electron beam of these nanotubes has been studied in two extreme cases of nitrogen incorporation content and configuration. These findings provide key information for the applications of these nanostructures.Comment: 25 pages, 13 figure

    Pathogenic variation of Phakopsora pachyrhizi populations in Brazil.

    Get PDF
    The obligate basidiomycete Phakopsora pachyrhizi is the causal agent of soybean rust that has potential to reduce the yield of soybean drastically. Soybean production in Brazil has been threatened by the rust since the pathogen was first discovered in 2001. To understand pathogenic variation of the rust populations in South America, an evaluation system for soybean rust resistance has been constructed using a set of 16 differential varieties. In this study, the evaluation system was used to investigate pathogenic variation among the P. pachyrhizi populations in Brazil. Samples of P. pachyrhizi were collected from the diseased soybeans in Brazil in the 2007-2008 and 2008-2009 soybean cultivation seasons. In the first season, two rust samples showed similar pattern of the infection types on the differential set, suggesting that the same or similar pathogen population was present in the two locations. The other samples were likely different pathogenic populations. In the second season, different patterns of the infection types were found among the samples. Comparison of the evaluation data from the two seasons demonstrated that pathogenic variation between the seasons was detected in the populations from Rio Grande do Sul and Paraná but was not remarkable in those from Rondônia. This study provides useful knowledge about P. pachyrhizi populations in Brazil to identify the resistant soybean genotypes and target effective cultivars against certain pathogen populations.Edição do Proceedings of the National Soybean Rust Symposium, New Orleans, 2009

    Self-field effects upon the critical current density of flat superconducting strips

    Full text link
    We develop a general theory to account self-consistently for self-field effects upon the average transport critical current density Jc of a flat type-II superconducting strip in the mixed state when the bulk pinning is characterized by a field-dependent depinning critical current density Jp(B), where B is the local magnetic flux density. We first consider the possibility of both bulk and edge-pinning contributions but conclude that bulk pinning dominates over geometrical edge-barrier effects in state-of-the-art YBCO films and prototype second-generation coated conductors. We apply our theory using the Kim model, JpK(B) = JpK(0)/(1+|B|/B0), as an example. We calculate Jc(Ba) as a function of a perpendicular applied magnetic induction Ba and show how Jc(Ba) is related to JpK(B). We find that Jc(Ba) is very nearly equal to JpK(Ba) when Ba > Ba*, where Ba* is the value of Ba that makes the net flux density zero at the strip's edge. However, Jc(Ba) is suppressed relative to JpK(Ba) at low fields when Ba < Ba*, with the largest suppression occurring when Ba*/B0 is of order unity or larger.Comment: 9 pages, 4 figures, minor revisions to add four reference

    Towards atomically precise manipulation of 2D nanostructures in the electron microscope

    Get PDF
    Despite decades of research, the ultimate goal of nanotechnology—top-down manipulation of individual atoms—has been directly achieved with only one technique: scanning probe microscopy. In this review, we demonstrate that scanning transmission electron microscopy (STEM) is emerging as an alternative method for the direct assembly of nanostructures, with possible applications in plasmonics, quantum technologies, and materials science. Atomically precise manipulation with STEM relies on recent advances in instrumentation that have enabled non-destructive atomicresolution imaging at lower electron energies. While momentum transfer from highly energetic electrons often leads to atom ejection, interesting dynamics can be induced when the transferable kinetic energies are comparable to bond strengths in the material. Operating in this regime, very recent experiments have revealed the potential for single-atom manipulation using the Ångströmsized electron beam. To truly enable control, however, it is vital to understand the relevant atomicscale phenomena through accurate dynamical simulations. Although excellent agreement between experiment and theory for the specific case of atomic displacements from graphene has been recently achieved using density functional theory molecular dynamics, in many other cases quantitative accuracy remains a challenge. We provide a comprehensive reanalysis of available experimental data on beam-driven dynamics in light of the state-of-the-art in simulations, and identify important targets for improvement. Overall, the modern electron microscope has great potential to become an atom-scale fabrication platform, especially for covalently bonded 2D nanostructures. We review the developments that have made this possible, argue that graphene is an ideal starting material, and assess the main challenges moving forward

    Hydrodynamic and Mass Transfer Properties in a Three Phase External Loop Airlift Compared with a Three Phase Internal Loop Airlift and a Slurry Bubble Column

    Get PDF
    The effects of suspended solid particles on the hydrodynamic and mass transfer properties were experimentally studied in a wide range of the superficial gas velocity, solid particle property and liquid viscosity in an external loop airlift bubble column in comparison with those in an internal loop airlift bubble column as well as a normal bubble column. The circulating liquid velocities UL, gas holdups G and volumetric gas liquid oxygen transfer coefficients kLa in the riser of the external loop airlift were found to be almost unaffected by the completely suspended solid particles. The above three properties obtained could be represented by our previous correlations for the gas-liquid two phase flow within an accuracy of ± 30% for a practical reactor design and operation. The analogous results were obtained on the G and kLa data in the three phase normal and internal loop airlift bubble columns, although a small amount of suspended solid particles was observed to cause a slight decrease in these values in contrast to a lower or negligible decrease in those of the three phase external loop airlift
    • …
    corecore